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DIMACS Workshop on Modeling Randomness in
Neural Network Training

June 5-7, 2024 at Rutgers University

About Participants Schedule

The DIMACS Workshop on Modeling Randomness in Neural Network Training: Mathematical,
Statistical, and Numerical Guarantees will be held at the DIMACS Center at Rutgers University from

June 5-7, 2024. The central question of this workshop is: what can random matrix theory tell us about
neural networks, modern machine learning, and Al?

One goal of the workshop will be to create bridges between the different mathematical and

computational communities by bringing together researchers with a diverse set of perspectives on
neural networks. Topics of interest include:

e understanding matrix-valued random processes that arise during NN training,
e modeling/measuring uncertainty and designing estimators for training processes,
e applications to these designs within optimization algorithms.
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arXiv: 2305.18270

Asymptotics of feature learning in two-layer networks
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Feature Learning after One Gradient Descent Step:
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Neural networks are good because they adapt and
“learn features” from the data

| —|

Convolution + RelLU + Max Pooling T T Fully Connected Layer T

Feature Extraction in multiple hidden layers Classification in the output layer

5 But what this exactly means?

Goal: make sense of this in a simple setting
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Initialisation Jacot, Gabriel fongler 18 Chigst Bach 19

Neal '94; Lee et al. '19]

Start by looking at fixed W,

@,(X, y) = argmin—— Z ;= (a. o(W'x))* + 4] |al|;

a

a.k.a. as Random Features Model, which approximates a kernel method:

p
Kpp(x, x') = E,, [0 ((wo, x)) o ((wo, x’))] ~ %Z o ((w]?, x)) o ((w,?, x’))
k=1

[Retch, Raimi 2007]

) What can we learn with that?

Mei, Montanari '19; Ghorbani, Mei, Misiakiewicz, Montanari '19, '20, '21;
Gerace, BL, Krzakala, Mézard, Zdeborova '20; Goldt, BL, Reeves, Krzakala, Mézard, Zdeborova
'21 Dhiffalah & Lu '20; Hu & Lu '20; Liang, Sur '20; Jacot, Simsek, Spadaro, Hongler, Gabriel 20;
BL, Gerbelot, Refinetti, Sicuro, Krzakala '22; Mei, Misiakiewicz, Montanari '22; Fan, Wang 2020;
Schroder, Cui, Dmitriev, BL '23, 24; Defilippis, BL, Misiakiewicz ;24



Limitations of RF

Theorem [Mel, Misiakiewicz, Montanari '22, informal]:

For isotropic data (e.g. x ~ Unif(S§¢™1)), with n, p = O(d")
one can learn at best a polynomial approximation of
degree k of the target f, (x)

E||f(x) = f0 a3, WO 5 = || Pecfic |17+ 0,(1)
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Limitations of RF

Theorem [Mel, Misiakiewicz, Montanari '22, informal]:

For isotropic data (e.g. x ~ Unif(S§¢™1)), with n, p = O(d")
one can learn at best a polynomial approximation of
degree k of the target f, (x)

E || f(0) = f0x; a5 WO 15 = || Poofi |17+ 041)

In particular, for n,p = O(d), can learn at best a linear approximation of f,

fi(x) = (04, x) + fiy ()

Intuition: 0'(<WO, x)) = Uy T /41<WO, X) + Z Iu—O:Hea((WO, X))
a>?2 a': @(d—a/2)
R o+ (W, X) + pé

o = E[He (0@]  ty =1/ Elo?] - i3 — p}



Gausslian egulvalence

Consider the following two ERM problems:

a,(X,y) = argmm—Z (v, — (@, o(W'x))* + A1 |al |5

a

a%(X,y) = argmm—Z (y; = @, pol + py WOx; + p, z))> + Al al |

a =1

Then, in the limitd — oo with n,p = O(d):

Gaussian equivalence principle (GEP)
[Goldt et al. "19; Mei & Montanari '19; Hu& Lu '20]

|R(4;) — R@7)| = 0




Consider the unique fixed point of the following system of equations

where V = k?V, +x2V,, V' =p — 3,Q = kiq, + k2q,, M =
and g 1s the Stieltjes transform of WOWOT o =L [a(z)], u =E [za(z)], u, =E [a(z)z]

A o [ oMy, ®
Vs = 7K12[ch,y Z (y, (Uo) ’7(‘}; 1) ] ’
[ 2
. a doren) @
qs = 7K12[Ec§,y Z (y’ a)O) ( ‘1/2 1> :| )
. a (1(y @1) — @)
S T, = 71<1[E§’y 0,Z (y, a)o) = ]
Vi = alc,%[Efy 7 (y, a)o) ’ ”(‘y,’wl) ] ;
[ 2
n(y 0] ) )
g = aki[E.fy Zz (y’ 0)0) ‘1/2 1>

N\

V

0= ﬁ (1 =2 gﬂ(—z)>,

qs = i i [1 — 228,(—2) + z* ’(—z)]
——t|zg -0+ 22|, [ (=0
A+ V)V, g # " | n(y, ) = argmin [ AR 20y, x)]
i R
mS=7S<1—Z gﬂ(—Z)), | - d 1 )
s Z’(y, a)) _ I X e_zv_o(x_w) 5 (y —fO(X))
Vw = }/A ll -1+ Zg’u(—Z)], L il
i+, Ly
el qW
qw_y(/1+V)2l L+ 2= Z)]
ms+qs N = 2 -
A l el diak e z)],
2

Kimg, wy = MI\/ Q& w; = /0¢&
— uy — > and z ~ H(0,1)

In the high-dimensional limit:

R(&ﬂ) — [E/LV
(
with (v, A)

\

p M*

0
i <0> <M* 0*

(') - 7]

)

A A
Rn(dl) = Z%t =t [E(f,y [Z (y’ 606\') Z ()7, ﬂ(y’ 601*))]

with wf = M*/4/0*&E wr =1/0%¢



Gausslian egulvalence

Gaussian equivalence principle (GEP)
[Goldt et al. '19; Mei & Montanari '19; Hu& Lu '20]
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Gausslian egulvalence

Generalisation error

Training loss

o
U

0.4

__ [Gerace, BL, Krzakala, Mézard, Zdeborova '20] __

Kernel

—— Logistic loss
—— Square loss

Gaussian equivalence principle (GEP)
[Goldt et al. '19; Mei & Montanari '19; Hu& Lu '20]

|R(4;) — R($)| — 0

Gaussian
universality

Equivalence
to a linear model

Limited
expressivity
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Partial Summary

Kernels/RF are able to learn “anything”,
but they need “a lot” of data.

In particular, with n, p = 0(d), only
learn linear functions.

To do better, need to learn features.
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One step of GD

Consider one step of GD from initialisation aO, WY with fresh batch (x;, yi)ie[no]

W= W0 — LNV, (= s %, WO))?

2) Canwe learn more than f,(x) = (0,,x)?

[ [Baetal,2022] ———
Forn,p = ©(d) and n = ©(1), no! GEP still valid. ' -
. 11 = 0O (d) sufficient to learn more. S
5 1072 ,
ks initialized CK L
| Q v ’7=® (1) h |
Can we characterise what? s = ®Z(d>
=== IPs1f" 72
10° 10*

sample size n

11



What you learn in one-step of SGD?

Consider a multi-index model, pao ~ Unmif([—1, + 1]), » large enough.
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What you learn in one-step of SGD?

Consider a multi-index model, y /pa’ ~ Unif([—1, + 1]), n large enough.

f*(x) — g(<wika X>, T <W;:kax>) <Wi19 W]:(> d—>>oo
g R >R wreSTia/d)y w1 wgll

Q Key idea: Hermite tensor decomposition

g(zla oo Zr) — Ho + Z //ll.(l)Zi + Z //ll:(l.z)hz(zl’)hz(Zj) + ...
l 1]

Hardness =~ large leap
Examples: g(2) = 2y + 2120 + 712233 r
8(z) = Hey(z)) Z
A

g(Z) = J1K9<3%4

|l
A &= =

12



What you learn in one-step of SGD?

Consider a multi-index model, \/]_an ~ Unmf([—1, + 1]), » large enough.

f*(x) — g(<wl*9 x>9 T <W;2ka X)) <Wi19 W]?) d;m

g R >R wreSTia/d)y w1 wgll

Linear subspace
learning

Od) O[> O[> .- Od’) nB

[Abbe et al. '22,'23; Damian, Lee, Soltanolkotabi '22; Dandi, Krzakala, BL, Pesce, Stephan '23] 13



What you learn in one-step of SGD?

Theorem 1. Let £ be the leap index of f* equation 1, and assume thatn = O(d*~%) for some § > 0. Then,

with probability at least 1 — cpe (%) log(d)® | there exists a universal constant ¢ such that foranyi € [p),

(W=t wi) - . bolylog(d)

. 7
w1 Tl d097 7

In other words, for every neuron 4, only a vanishing fraction of the weight w lies in the target subspace V*.
In particular, if § > 1, this large gradient step does not improve over the initial random feature weights.

On the other hand, when n = (d%), we are able to characterize exactly what is being learned:

—
Theorem 2. Assume that the {-th Hermite coefficient u, of o is nonzero, and set the learning rate n = pd =

Then, with probability at least 1 — ce=<108(d)°  there exists a random variable X independent of d with positive

expectation such that =1

w;

W)

m > X; (8)
W= T | v

where X1, ..., X, are i.i.d copies of X. Further, let u7, ..., uy, be the higher-order singular vectors of Cy,

and define V) = span(uj,...,uy,). Then, the projections w} asymptotically belong to V}, in the sense that
there exists a constant c such that

polylog(d)
I -yl < c : 9
I~ Myl < P2R o

and they span the space V*. [Dandi, Krzakala, BL, Pesce, Stephan 23]

[Damian, Lee, Soltanolkotabi '22] implies the positive part of (i) for n = O(d?)
[Ba, Erdogdu, Suzuki, Wang, Wu, Yang '22] proved a rank-one property for single index teacher

forn = O(d) in (i) 14



Partial Summary

With a single gradient step and
n,p,n = 0(d)

can learn at best a non-linear function
of one direction

J(x) = g({0,, x))
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Partial Summary

With a single gradient step and
n,p,n = 0(d)

can learn at best a non-linear function
of one direction

J(x) = g({0,, x))

(&) Can we get sharp asymptotics for the error?

15



Mapping to a sRF model

After a single gradient step with n,p,y = ©(d):

W= W0 = 2L 3V, ({0, ) ~ fl a, WO
=1
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Mapping to a sRF model

After a single gradient step with n,p,y = ©(d):

W= W0 = 2L 3V, ({0, ) ~ fl a, WO
=1

We can decompose:

Wl =wo+ v+ A [Ba et al., '22]

y 1 & y 6(2) = 0(2) —
= € R T =— D sWR)g(0, vy e R T =N A
B

Taking a

0

1 =Lk lo(2)7]

= 1p, after some massage...

16



Mapping to a sRF model

After a single gradient step with n,p,y = ©(d):

W= W0 = 2L 3V, ({0, ) ~ fl a, WO

w, € ST1(/o)
We can decomypose: Wl = W+ ruv U E Sd—l(\/_)
Vv E Sd_
np d > n’d _
r =ZEI41\/ Hy +/41* c=1+ ,ul,u%,u; v,0,) =
p ngp* \/—,u2 + ,u
u; = E[o(2)z] U, = E[6(2)?] i1 = E[(6(2)z — py)°]

“Spiked Random Features”

[Cul, Pesce, Dandi, Krzakala, Lu, Zdeborova, BL '24]

16



Conditional GEP

Recall that for the standard RF model

Gaussian Equivalence Theorem (GET)

o (W% x)) ~ pg + p (W0, x) + p, 8

[Goldt et al. 19;
Mei, Montanari '19;
Hu & Lu '20]

17



Conditional GEP

Recall that for the standard RF model

Gaussian Equivalence Theorem (GET)

o (W x)) & o+ (W, x) + p, &

We can show that for a sSRF model with a® = lp:
CGET [Dandi, Krzakala, BL, Pesce, Stephan '23]

o ((Whx)) & po((v, X)) + pu OWo, Xy + p, (k)&

kK= {(v,x) x=xk0, +x"

[Goldt et al. 19;
Mei, Montanari '19;
Hu & Lu '20]

17



Conditional GEP

Recall that for the standard RF model

Gaussian Equivalence Theorem (GET)

o (W x)) & o+ (W, x) + p, &

We can show that for a sRF model with a¢° = lp:

Examples:

CGET [Dandi, Krzakala, BL, Pesce, Stephan '23]

o ((Whx)) & po((v, X)) + pu OWo, Xy + p, (k)&

kK= {(v,x) x=xk0, +x"

— a1 K 2 1.2
G(Z) = §121 po(x) = erf <$) Ui(x) = \/;e_jK

po(k) =1 — ﬂo(K)z — M1(’<)2

[Goldt et al. 19;
Mei, Montanari '19;
Hu & Lu '20]

17



Main result

Together, this allow us to characterise the risk:

R(4)) = E[(g({0,,x)) — {a;, s(W'x))*]

Where:

A R
Q,(X,y) = argmin— Y (8((0,, ) — (&, 6(W'x))> + 4[| a| |3
2n

a i=1

18



Main result

Together, this allow us to characterise the risk:

R(4)) = E[(g({0,,x)) — {a;, s(W'x))*]

Where:

A R
Q,(X,y) = argmin— Y (8((0,, ) — (&, 6(W'x))> + 4[| a| |3
2n

a i=1

More precisely, for a” = 1 in the limitd — oo with n, p, 1 = O(d):

_ g 2,2
R(@)) =k, (g <7”< +4/1- yZZ> — pglm — py (R — = 1(K)wz> + (k)2 + pr () — ”1(12 z

N
17a, (WTa,, TI*W'a,) 1k (G W)
m = q, = 4> = C =
VP p p \Vdp

18



Exact asymptotics (¢” = 1))

-

dv(e, 7, )0
Vl - J ~ 2
ﬂ + VIQ + Vz
dv(o, T, 7)
V2 - I ~ A
/1 + VlQ + V2
E [Mo(K)(U*(K, y) — p(KE) ]
K,y 1 + V(x)
m =
po®)2

IEK[I+V(K)]

= {\/B [ dv(o, 7, Mot —
(= C\/B[dv(o. 7, mer I
A dI/(Q,T,ﬂ')Q?TZ

-

Sy a PM1(K)2
Vi= B KT+ V()

A = P (K)?
27 TR+ V()
3 2 b(x, y)
_ @ 2
C - \/B IEK,yKlul(K) 1+ V(x)
s o Y (DK, ) + Y (k)
V= N/ 1+ V(x)
a, = ngld p=pld
a=nld n=nld
2
k=wx)y p=1l-v

IV, V,)?

)
10 + G, + (ot + lifzgﬂz) -
q, = Idl/(@, 7, ﬂ)Q

" A~ \2
ngzdv(g, T, )

~n L 4 Vig+ V)2

) [(1 ~ B0, 7)) 1]
(1 — ViV, ‘72)>2

(5119 + Gy + Cor? + lﬂZQﬂZ)dv(e, 7, 7)

3 A A
+ By, ——
pe by g0, 0,

9 = >
—52I 720d1(o, 7, 70) | — 1
A+Vie+ oy (1= p0nich,, 7))
i (s ¥ + pa) — i (P
— Z 2 1
q1 = ;[Ek,ylul(’() >
(1+ V)
<
A _a 5 b, ) + pg(x) — py (1)*y?
4y = E[Ek,y//@(’() 3
(1+ V()

IV, V,)?

<1 — VIV, Vz)>2

min(p,d) .
W= 214 AN § S
- min(p,d) _
v, T, 1) = — Z ) (/li—g)5(fiTv—T)6 iTHLH—ﬂ>
P i
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Partial Summary

Single step of GD can be
approximated by a spiked RF model

Conditional GET allow us to handle
non-linearity.

Can derive a sharp asymptotic
description of the error.
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Batch size

risk
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Spectral properties
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Risk

bounds

Recall that. Noting that this is monotonic in ay = ng/d :

R(&/’t) — [EK',Z

(g <7K +4/1 - }’ZZ> — po(K)m — p (KKE —

p (W

VP

2
Z) + 1,(K)*qy + po(K)*q, —

//i1(’<)2l//2
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Risk bounds

Recall that. Noting that this is monotonic in ay = ng/d :

inf R(a, 4,1, ) < 1nf El(g(x) — blﬂo(K))z]

A>0 b,
inf R(a, 4,7, #) > inf E[(g(k) — byug(K) — bypy (K)K)?]
A>0 by,b,
- == target
1.0 1 upper bound 2Z7~
—— lower bound
C=Yy = 1 0.5
r=20.9 0o
g = sin s
o = tanh ~
~1.0 ~-=
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Risk bounds

Recall that. Noting that this is monotonic in ay = ng/d :

1o
c=y=1 0.5
r=20.9 ool
g = sIn o
o = tanh

- == target
upper bound 2Z S
— |ower bound

Nn.b.:

1. L,(/V) distance
between g and

span(ig, 41)
2. Can make

tighter by
optimising over 7]
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A note on Initialisation

So far, assumed a’ = lp. But can be generalised to finite support a eV

o(Wlx) <

_ﬂo(u1’<)_
|+

:u()(upK)
ue VP

_//i1(u1’<)—
: O Wx +
_ﬂ1(up’<)_
&~ H(O,])

_/42(”1’0—

_ﬂz(upK)_
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A note on Initialisation

So far, assumed a’ = lp. But can be generalised to finite support a eV

o(Wlx) <

_ﬂo(u1’<)_

_ﬂo(upK)_

ue VP

_//i1(u1’<)—

_M1(up’<)_

E~NOL)

This now spans a richer functional basis:

UHo(@), ui(@°) } ey

For instance, in the limit 4, gy, 7 = oo

G(Wlx)k = po(Upk)

O Wx +

Single neuron with random weights.

_/42(“170—

0.5

_ﬂz(upK)_

—— k=1 Theory

® k=1 Simulation

—— k=2 Theory

® k=2 Simulation

—— k=4 Theory

® k=4 Simulation

0.5 1.0

1.5

2.0

a = # Samples / # Features

2.5
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Complementary regime

A Theory of Non-Linear Feature Learning with One Gradient Step
in Two-Layer Neural Networks

Behrad Moniri*! Donghwan Lee** Hamed Hassani! Edgar Dobriban®

—_— — S
n=20 n=0(d") 5<s<1
A A A
2
k7
=i
8 ) ) Linear ) Quadratic Linear
Untrained Features Untrained Features T Untrained Features T T
Singular Values Singular Values Singular Values
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Main ideas

SGCD step ——

@, =oc(Wx) =~

sRF model

———

oc(Wx; + (v,x)u') =

cGET

HolKiu) + //tl(Kiu)WxiJ‘ + p, (ku)é
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Main ideas

SGD step —— sRF model —— cGET

p;=c(Wx) «~ G(le. + (v, xl.>uT) ~ (k) + py (k) Wit + p, ()€,

Q 2 stages of deterministic equivalent: over X and 1%
(leave-one-out + Burkholder)

Main challenges:

. Foru,; € 1¢i5 .-, G}, with prob. 7 = pj/p, need to handle k spikes separately.

- For bulk, need deterministic equivalent for block-structured

Wishart matrices - 7
Cl 1 1P1><P1 C12 1P1><P2 C1k1P1><Pk
~ o~ — kxk
M — (Ce @ WWT + De)—l C. = C211.p2><p1 C221.P2><P2 | C2k1.192><pk €R
k _ _ )
Z D.=p Dy, ., 0 .. 0
J D, = 0  Dpl, .. 0|eR¥™
J=1 .
= . 25



Conclusion

7% In proportional asymptotics,
kernels can learn at best a linear approximation

With one gradient step, 2LNN learn
Q/ do better than kernels along
one (and only one) direction

w We can provide a sharp asymptotic description
on what is learned
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Conclusion

7% In proportional asymptotics,
kernels can learn at best a linear approximation

With one gradient step, 2LNN learn
Q/ do better than kernels along
one (and only one) direction

Q/ We can provide a sharp asymptotic description
on what is learned

:[:: Multiple steps, same batch,
continuous weights
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