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Talk outline

1 Challenges with optimization methods in statistical machine learning models

2 Population to sample analysis framework
Contraction of population operator
Stability of sample operator

3 Convergence of optimization methods under different settings of operators
Stable and fast operators
Stable and slow operators
Unstable and fast operators
Unstable and slow operators

4 Optimality of exponentially increasing step size gradient descent

Main stories

Unstable optimization algorithms can be preferred to stable ones

Exponentially increasing step size can be computationally optimal for
statistical estimation



Parametric statistical machine learning models

Given a random sample of size n

X1, . . . , Xn ∼ fθ?(x)

Known: family of distributions {fθ(x), θ ∈ Θ}
Unknown: θ?
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Estimation methods

Standard approaches to estimate θ? include M-estimators (e.g., least-square,
MLE), methods of moments, etc.

Challenge: fθ is generally non-convex function and optimal solutions from
these approaches do not admit closed-forms

Solution: Optimization algorithms are used to approximate θ?
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Fundamental questions

Under what conditions does an optimization algorithm achieve a statistically
optimal rate?

When is an unstable optimization algorithm, such as Newton’s method,
preferred to a stable algorithm, such as gradient descent method?

Will increasing step size, instead of decreasing step size, be statistically and
computationally optimal?
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First example: Non-linear regression model

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = g
(
X>i θ

?
)

+ ξi, for i = 1, . . . , n.

ξi is a zero-mean noise variable with variance σ2

g(t) = t2 for t ∈ R
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Behavior of optimization algorithms
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(a) (b)

The behavior of gradient descent (GD), cubic-regularized Newton’s method
(CNM), and the Newton’s method (NM) for the regression model when θ? = 0.

All the algorithms achieve optimal statistical rates n−1/4

Newton’s method takes least number of steps (≈ log(n)) while gradient
descent takes significantly larger number of steps (≈ √n)
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Second example: Mixture model

Two-component Gaussian mixtures:

I True model: 1
2N (−θ?, Id) + 1

2N (θ?, Id)

I Fitted model: 1
2N (−θ, Id) + 1

2N (θ, Id)
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Behavior of optimization algorithms
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The behavior of Expectation-Maximization (EM) algorithm and the Newton’s
method (NM) for the mixture model when θ? = 0.

EM and Newton’s method achieve optimal statistical rates n−1/4

Newton’s method takes ≈ log(n) steps to converge while EM algorithm
takes significantly larger number of steps (≈ √n)
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General framework

Fn: the empirical operator

I Example: Fn(θ) = θ − η∇fn(θ) where fn is sample log-likelihood
function

F : the population operator

I Example: F (θ) = θ − η∇f(θ) where f is population log-likelihood
function, i.e., the limit of fn when n→∞

θ?: fixed point of F , i.e., F (θ?) = θ?

θt+1
n = Fn(θtn) for t = 1, 2, . . .

Question

Under which conditions, {θtn} approaches a suitably defined neighborhood of θ??
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Population to sample analysis1

Triangle inequality:

‖θt+1
n − θ?‖ = ‖Fn(θtn)− θ?‖ ≤ ‖F (θtn)− θ?‖

︸ ︷︷ ︸
A

+ ‖Fn(θtn)− F (θtn)‖
︸ ︷︷ ︸

B

A: Contraction of population operator

B: Deviation between sample and population operators

1(Yi and Caramanis, 2015), (Hardt et al., 2016), (Balakrishnan et al., 2017), (Chen
et al., 2018), (Kuzborskij and Lampert, 2018), (Charles and Papailiopoulos, 2018),
(Dwivedi et al., 2020a,b), etc.
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Contraction of population operator F

There are two types of contractions:

Fast convergence: For κ ∈ (0, 1), F is FAST(κ)-convergent if

‖F t(θ0)− θ?‖ ≤ κt ‖θ0 − θ?‖ for all t = 1, 2, . . .

Slow convergence: For β > 0, F is SLOW(β)-convergent if

‖F t(θ0)− θ?‖ ≤ c

tβ
for all t = 1, 2, . . .
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Example: Fast versus slow convergence

We consider minθ f(θ) = θ2p

2p for some p ≥ 1

Gradient descent algorithm:

F (θ) = θ − η∇f(θ) = θ
(
1− ηθ2p−2

)

When p = 1, F is FAST(κ)-convergent algorithm with κ = 1− η
When p ≥ 2, F is SLOW(β)-convergent with β = 1

2p−2
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Deviation between sample and population operators

There are two types of deviations:

Stability condition: For γ ≥ 0, Fn is STA(γ)-stable with noise ε(·) if

P
[

sup
θ∈Ball(θ?,r)

‖Fn(θ)− F (θ)‖ - min
{
rγε(n, δ), r

}]
≥ 1− δ

for any r > 0

Instability condition: For γ < 0, Fn is UNS(γ)-unstable with noise ε(·) if

P

[
sup

θ∈Annulus(θ?,r,ρout)

‖Fn(θ)− F (θ)‖ ≤ ε(n, δ) max

{
1

r|γ|
, ρout

}]
≥ 1− δ

for any radius r ≥ ρin.

1Annulus(θ?, r, ρout) = {θ : r ≤ ‖θ − θ?‖ ≤ ρout}
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Example of stable condition

minθ fn(θ) = θ4

4 + w
2
√
n
θ2 where w ∼ N(0, σ2)

Gradient descent:

I Sample operator: Fn(θ) = θ
(

1− ηθ2 − η w√
n

)

I Population operator: F (θ) = θ
(
1− ηθ2

)

With probability 1− δ,

|Fn(θ)− F (θ)| = η|θ| |w|√
n
- |θ|

√
log(1/δ)

n

=⇒ Fn is STA(γ)-stable with γ = 1 and noise ε(n, δ) =
√

log(1/δ)/n
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Example of unstable condition

minθ fn(θ) = θ4

4 + w
2
√
n
θ2 where w ∼ N(0, σ2)

Newton’s method:

I Sample operator: Fn(θ) = θ − θ3+wθ/
√
n

3θ2+w/
√
n

I Population operator: F (θ) = θ − θ3

3θ2

With probability 1− δ, when |θ| %
(

log(1/δ)
n

)1/4

:

|Fn(θ)− F (θ)| - 1

|θ|

√
log(1/δ)

n

=⇒ Fn is UNS(γ)-unstable with parameter γ = −1 and noise
ε(n, δ) =

√
log(1/δ)/n
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General theory: Stable and fast operators

The operator F is FAST(κ)-convergent

The empirical operator Fn is STA(γ)-stable with noise ε(n, δ) for some
γ ≥ 0

Theorem 1 (Balakrishnan et al., 20172)

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

‖θtn − θ?‖ - ε(n, δ) when t % log(1/ε(n, δ)).

Furthermore, this bound is tight.

2Sivaraman Balakrishnan, Martin J. Wainwright, Bin Yu. Statistical guarantees for
the EM algorithm: From population to sample-based analysis. Annals of Statistics, 2017
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Example of stable and fast operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n.

where |θ?| >>> 1

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We use gradient descent method (GD) to the least-squares loss
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Example of stable and fast operators

Population GD operator FGD is FAST( 1
2 )-convergent

Sample GD operator FGD
n is STA(1)-stable with noise ε(n, δ) =

√
log4(n/δ)

n

Under suitable initialization, the sequence θt+1
n = FGD

n (θtn) satisfies

|θtn − θ?| - n−1/2 when t % log(n)
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General theory: Stable and slow operators

The population operator F is 1-Lipschitz and is SLOW(β)-convergent

The empirical operator Fn is STA(γ)-stable for some γ ∈ [0, (1 + β)−1)

Theorem 2 (Ho et al., 2024a3)

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

‖θtn − θ?‖ - [ε(n, δ)]
β

1+β−γβ when t % ε(n, δ)−
1

1+β−γβ .

Furthermore, this bound is tight.

The proof for this result relies on an epoch-based localization argument

3Nhat Ho*, Raaz Dwivedi*, Koulik Khamaru*, Martin J. Wainwright, Michael I.
Jordan, Bin Yu. Instability, computational efficiency, and statistical accuracy. Journal of
Machine Learning Research, Accept under minor revision 2024
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Example of stable and slow operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n

where θ? = 0

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We apply gradient descent method (GD) to the least-squares loss
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Example of stable and slow operators

Population GD operator:

FGD(θ) = θ
[
1− 6ηθ2

]

=⇒ FGD is SLOW( 1
2 )-convergent as η ∈ (0, 1

6 ]

Sample GD operator:

FGD
n (θ) = θ − η

(
2

n

n∑

i=1

X4
i θ

3 − 2

n

n∑

i=1

YiX
2
i θ

)

=⇒ FGD
n is STA(1)-stable with noise ε(n, δ) =

√
log4(n/δ)

n

Under suitable initialization, the sequence θt+1
n = FGD

n (θtn) satisfies

|θtn − θ?| - n−1/4 when t %
√
n
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General theory: Unstable and fast operators

The population operator F is FAST(κ)-convergent

The empirical operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ)
for some γ < 0

Theorem 3 (Ho et al., 2024a)

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

min
k∈{0,1,...,t}

‖θkn − θ?‖ - max
{

[ε(n, δ)]
1

1+|γ| , ρ̃n

}
when t % log(1/ε(n, δ)).

Furthermore, this bound is tight.
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Necessity of the minimum
We consider the following example:

L(θ) = −θ4(θ − 2)2 and Ln(θ) = −
(
θ4 − θ2

√
n

)
(θ − 2)2

−1 0 1 2
θ →

−1.5

−1.0

−0.5

0.0

0.5

θ?
ρ̃

ρ

θ0

θ1

θ10

θ100θ0
θ10

Ln(θ)

L(θ)

Newton iterates

Newton iterates

When the initialization is too close to θ? (red diamonds), Newton’s iterates
jump far away from θ? and converge to another fixed point

When the initialization is in A(θ?, ρ̃, ρ), the Newton iterates (blue circles) do
not leave this annulus and converge to a small neighborhood of θ?
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Example of unstable and fast operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n

where θ? = 0

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We apply Newton’s method (NM) to the least-squares loss
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Example of unstable and slow operators

Population NM operator:

FNM(θ) = θ − θ3

3θ2
=

2

3
θ

=⇒ FNM is FAST( 2
3 )-convergent

Sample NM operator:

FNM
n (θ) = θ −

(
1
n

∑n
i=1X

4
i

)
θ3 −

(
1
n

∑n
i=1 YiX

2
i

)
θ(

3
n

∑n
i=1X

4
i

)
θ2 − 1

n

∑n
i=1 YiX

2
i

=⇒ FNM
n is UNS(−1)-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4
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Example of unstable and slow operators

FNM is FAST( 2
3 )-convergent

FNM
n is UNS(−1)-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4

Under suitable initialization, the sequence θt+1
n = FNM

n (θtn) satisfies

|θtn − θ?| - n−1/4 when t % log(n)
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General theory: Unstable and slow operators

The population operator F is 1-Lipschitz and is SLOW(β)-convergent

The empirical operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ)
for some γ < 0

Theorem 4 (Ho et al., 2024a)

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

min
k∈{0,1,...,t}

‖θkn − θ?‖ - max
{

[ε(n, δ)]
β

1+β−γβ , ρ̃n

}
when t % ε(n, δ)−

1
1+β .

Furthermore, this bound is tight.
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Example of unstable and slow operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n

where θ? = 0

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We apply cubic-regularized Newton’s method (CNM) to the least-squares
loss
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Example of unstable and slow operators

L̃ and L̃n are population and sample least-square losses

Population CNM operator:

FCNM(θ) = arg min
y∈R

{
L̃′(θ)(y − θ) +

1

2
L̃′′(θ)(y − θ)2 + L |y − θ|3

}

= θ −
2
3θ

3

θ2 +
√
θ4 + 2

3θ
3

=⇒ FCNM is SLOW(2)-convergent

Sample CNM operator:

FCNM
n (θ) = arg min

y∈R

{
L̃′n(θ)(y − θ) +

1

2
L̃′′n(θ)(y − θ)2 + L |y − θ|3

}

=⇒ FCNM
n is UNS(− 1

2 )-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4
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Example of unstable and slow operators

FCNM is SLOW(2)-convergent

FCNM
n is UNS(− 1

2 )-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4

Under suitable initialization, the sequence θt+1
n = FCNM

n (θtn) satisfies

|θtn − θ?| - n−1/4 when t % n1/6
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Summary of results

Operator Properties Optimization Rate Stability
Iterations for
convergence

Statistical error
on convergence

General expressions

Fast, stable FAST(κ) STA(γ) log(1/ε(n, δ)) ε(n, δ)

Slow, stable SLOW(β) STA(γ) ε(n, δ)−
1

1+β−γβ [ε(n, δ)]
β

1+β−γβ

Fast, unstable FAST(κ) UNS(γ) log(1/ε(n, δ)) [ε(n, δ)]
1

1+|γ|

Slow, unstable SLOW(β) UNS(γ) [ε(n, δ)]−
1

1+β [ε(n, δ)]
β

1+β+|γ|β
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Exponentially increasing step size gradient descent (EGD)

Using gradient descent (GD) with fixed or decaying step-size is a standard
practice

Such step-size schedules can be sub-optimal in computational complexity for
reaching final statistical radius when the loss functions are locally convex

In (Ho et al., 2024b4), we demonstrate that exponentially increasing the
step size can indeed give optimal computational complexity O(nd) for
parameter estimation

4Nhat Ho, Tongzheng Ren, Purnamrita Sarkar, Sujay Sanghavi, Rachel Ward (α-β
order). An exponentially increasing step-size for parameter estimation in statistical
models. Under revision, Journal of Machine Learning Research, 2024
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Exponentially increasing step size gradient descent (EGD)

The sample EGD updates take the form:

θt+1
n := θtn −

η

τ t
∇fn(θtn),

where fn is the sample loss function, τ ∈ (0, 1] is some given scale
parameter, and η > 0 is the step size

The corresponding population EGD updates are:

θt+1 := θt − η

τ t
∇f(θt)

where f is the population loss function
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Fixed scale τ : Insights from simple convex settings
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GD versus EGD iterates for solving the population loss function f(θ) = θ2p/(2p)
when p ∈ {2, 4}. Left: p = 2; Right: p = 4. The EGD iterates converge linearly
to the true parameter θ∗ = 0, while the GD iterates converge to θ∗ at a sub-linear

rate.
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Fixed scale τ : Linear convergence of population EGD

Homogeneity Assumption: There exist constants α ≥ 0 and ρ > 0 such that
f is locally convex in B(θ∗, ρ) and for all θ ∈ B(θ∗, ρ), we have

λmax(∇2f(θ)) ≤ c1‖θ − θ∗‖α,
‖∇f(θ)‖ ≥ c2(f(θ)− f(θ∗))1− 1

α+2 ,

where c1, c2 are some positive universal constants

Theorem 5 (Ho et al., 2024b)

Assume that the homogeneity assumption holds for some α > 0. For τ ∈ [0, 1)

such that 1−τ
α+2
α

τ ≤ cα+1
2

2c1(α+2)α , the population EGD iterates {θt}t≥0 satisfy

f(θt)− f(θ∗) - τ
α+2
α t,

‖θt − θ∗‖ - τ
t
α .
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Optimal complexities of sample EGD when α ≥ 1

Stability of gradient condition: For γ̄ ≥ 0,

sup
θ∈B(θ∗,r)

‖∇fn(θ)−∇f(θ)‖ - rγ̄ε(n, δ),

for any r > 0

Theorem 6 (Ho et al., 2024b)

Assume the homogeneity and stability conditions hold with α ≥ γ̄ ≥ 1. Under
suitable assumptions, we have

min
1≤k≤t

‖θkn − θ∗‖ - (ε(n, δ))
1

α+1−γ̄ when t % log(1/ε(n, δ)).

The fixed-step size GD iterates reach the similar statistical radius after
O(ε(n, δ)−

α
α+1−γ̄ ) number of iterations

The total computational complexity of the EGD is optimal and much
cheaper than that of the GD
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Fixed scale τ : Divergence under local strong convexity
Our results thus far are under the homogeneity assumption when α > 0

When α = 0, i.e., the population loss is locally strongly convex, the
population EGD iterates diverge
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GD and EGD algorithm iterates for solving f(θ) = θ2/2. EGD iterates converge
faster than GD at the first several iterations, and start to diverge.
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Fixed scale τ : Statistical guarantee when α = 0

Theorem 7 (Ho et al., 2024b)

Assume that the homogeneous and the stability conditions hold with α = γ̄ = 0.
Then, by choosing T̄ � log(1/(η))/ log(1/τ), we have

min
1≤t≤T̄

‖θtn − θ∗‖ - ε(n, δ)
︸ ︷︷ ︸

Statistical error

+ exp
(
− (1−ηc1)(τ−1−c1η)

2(τ−2−1)

)
‖θ0
n − θ∗‖

︸ ︷︷ ︸
Optimization error

,

where c1 is constant in the homogeneity assumption.

Similar to the population EGD iterates, after T̄ � log(1/(η))/ log(1/β)
iterations, the sample EGD iterates diverge

The non-vanishing optimization error can be resolved by using sample size
dependent scale τ
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Optimality of EGD with sample size dependent scale τ

We choose the scale τ to balance the statistical and optimization errors

It leads to τ2 = 1− (1−ηc1)2

2 log(1/ε(n,δ)) where c1 is a constant in the homogeneity

assumption

Theorem 8 (Ho et al., 2024b)

Given that choice of τ , we have:

(a) When α = 0 and γ̄ = 0 in homogeneity and stability conditions:

min
1≤k≤t

‖θtn − θ∗‖ - ε(n, δ) when t % log(1/ε(n, δ))

(b) When α ≥ γ̄ ≥ 1 in homogeneity and stability conditions:

min
1≤k≤t

‖θkn − θ∗‖ - (ε(n, δ))
1

α+1−γ̄ when t % log(1/ε(n, δ)).

Therefore, with the sample size dependent scale τ , the EGD has optimal
computational complexity O(nd) to reach the final statistical radii
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Future directions

Accelerated optimization methods, such as Nesterov gradient descent,
cannot be analyzed directly by the current framework

I It is due to the multi-variables operators associated with accelerated
optimization methods

The theory does not extend to the setting of dependent data (the
population operator is not naturally defined)

There are three practical directions for the exponentially increasing step size
gradient descent method:

I Beyond the homogeneity condition
I Tuning free of step size (e.g., RMSProp)
I Global convergence (e.g., Moreau-Yosida regularization via

Hamilton-Jacobi PDE)
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Thank You!
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Outline of proof: Epoch-based argument

Assume θ0 the starting point for epoch ` and r = ‖θ? − θ0‖ = ε(n, δ)λ`

Slow convergence of population iterates: ‖F t(θ0)− θ?‖ - t−β

Stability of sample operator: ‖F tn(θ0)− F t(θ0)‖ - t · rγ · ε

Goal: At the end of epoch `, we want to find suitable t and λ`+1 such that
‖F tn(θ0)− θ?‖ - ελ`+1
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Outline of proof: Epoch-based argument
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, and ⌫? � �`  ↵ for all ` � O(log(1/↵))
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Outline of proof

Assume that ‖θtn − θ?‖ > [ε(n, δ)]
1

1+|γ| for all t - log(1/ε(n, δ))

As F is FAST(κ)-convergent and Fn is UNS(γ)-unstable,

‖θt+1
n − θ?‖ ≤ ‖Fn(θtn)− F (θtn)‖+ ‖F (θtn)− θ?‖

≤ ε(n, δ) max

{
1

[ε(n, δ)]
|γ|

1+|γ|

, ρ

}
+ κ · ‖θtn − θ?‖

. . .

≤ ε(n, δ) max

{
1

[ε(n, δ)]
|γ|

1+|γ|

, ρ

}
(1 + κ+ . . .+ κt−1)

+ κt · ‖θ0
n − θ?‖

- [ε(n, δ)]
1

1+|γ| ,

when t % log(1/ε(n, δ))
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Outline of proof

ν? = β
1+β−γβ

Assume that ‖θtn − θ?‖ > max {[ε(n, δ)]ν? , ρ̃n} for all t - ε(n, δ)−
1

1+β

As F is SLOW(β)-convergent and Fn is UNS(γ)-unstable,

‖θt+1
n − θ?‖ ≤ 1

tβ
+ t · ε(n, δ)

[ε(n, δ)]ν?|γ|

- [ε(n, δ)]ν? ,

when t % ε(n, δ)−
1

1+β
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Additional regularity condition to remove the minimum

The population operator F is FAST(κ)-convergent

The empirical operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ)
for some γ < 0

There exists a constant C such that the sequence θtn = F tn(θ0
n) satisfies:

‖θt+1
n − θ?‖ ≤ Cρ̃ whenever ‖θtn − θ?‖ ≤ ρ̃,

where ρ̃ = max
{

[ε(n, δ)]
1

1+|γ| , ρ̃n

}

Proposition 9

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

‖θtn − θ?‖ - max
{

[ε(n, δ)]
1

1+|γ| , ρ̃n

}
when t % log(1/ε(n, δ)).

Furthermore, this bound is tight.
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