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Perceptron

Given labeled data

�

X1 X2 Xm
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Perceptron

Find a classifier
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Symmetric perceptron
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Perceptron

Fix a subset K ⊂ R. Given data X1, . . . ,Xm ∈ Rn find a
”classifier” σ from the set of classifiers Σ such that
〈Xi , σ〉 ∈ K for all i .
For example, Σ = {±1}n, 〈Xi , σ〉 ∈ (−κ, κ) = K – Version
we consider
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Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)
Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?
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Existence

Theorem (Abbe, Li & Sly [20], Xu & Perkins [20])

Z d
= N(0,1). W.h.p. solutions exist iff

α < αSAT(κ) ,
log 2

− logP(|Z | ≤ κ)
.

Intuition: for a fixed σ,

P(Aσ ∈ (−κ, κ)n) = (P(−κ < Z < κ))αn .

Expected number of solutions: 2n (P(−κ < Z < κ))αn.
Goes to 0 as n→∞ if α > αSAT(κ).
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Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19



Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.

Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19



Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.

Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19



Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.

But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19



Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19



Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.
10 / 19



Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]
But... known algorithms work for α much smaller than
1.71...
Can we get matching bounds?
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ensemble-OGP

Create an independent copy Ã of A.
A(t) =

√
1− tA +

√
tÃ. Still i.i.d. N(0,1/n) entries.

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) and the same 0 < ν1 < ν2 < 1, the
following holds: for every 0 < s < t < 1 and every
σ ∈ ΣSAT(s), τ ∈ ΣSAT(t),

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely the gap holds across all instances A(t).
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ensemble-multi-OGP. Asymptotics κ→ 0

κ→ 0. m independent copies A1, . . . ,Am. m interpolation
paths

√
1− tA +

√
tÃk , k = 1, . . . ,m.

Theorem (G, Kizildag, Perkins & Xu [22])
For every sufficiently small κ and every

10κ2 log

(
1
κ

)
< α <

log 2
log
( 1
κ

)
there exist 0 < ν1 < ν2 < 1 and m such that the following holds:
for every 0 < s1 < s2 < · · · < sm < 1 and every
σ1 ∈ ΣSAT(A(s1)), . . . , σm ∈ ΣSAT(A(sm)),

n−1d(σk , σ`) ∈ [0, ν1] ∪ [ν2,1],

for at least one pair 1 ≤ k , l ≤ m.
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ensemble-multi-OGP. Asymptotics κ→ 0

Theorem (GKPX)
Informally, for small κ, and

αOGP = 10κ2 log

(
1
κ

)
< α < αSAT(κ) =

log 2
log
( 1
κ

)
there are no tuples of solutions with intermediate pair-wise
distances, across all m interpolation paths.
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ensemble-multi-OGP. Asymptotics κ→ 0

The best algorithm Bansal & Spencer [20] works when
α = O(κ2) ≈ O(κ2 log(1/κ)) = αOGP.
A suspect is found – αOGP !

But can we prove guilt beyond reasonable doubt?
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What can be ruled out by OGP?

What classes of algorithms can be ruled out with OGP?
Stable algorithms: small change in A results in a small
change in ALG(A).

Theorem (GKPX)

Kim & Roche [93] algorithm is stable: if t = 1
n0.02 then whp

d (ALG(A(t))ALG(A(0))) = o(n)

I.e. changing input by 1/n0.02 changes only sublinearly many
entries in the solution.
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OGP is a barrier to stable algorithms

But what about Banal & Spencer algorithm? Is it stable? Most
likely not...
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OGP is a barrier to online algorithms

Bansal & Spencer algorithm is online: σk is set to ±1
depending only on columns 1, . . . , k of the matrix A.

Theorem (GKPX)
Every online algorithm can be implemented on interpolated
instances A(t), t ∈ [0,1] to create m-tuples ruled out by
e-m-OGP. That is OGP is a barrier to online algorithms.
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Thank you.
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