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Mark I Perceptron

Eléctronic ‘Brain’ Teaches Itself

| The Navy last week demenstrated|

'the embrvo of an electronic com-
‘pule’r named the Pereaptron whieh
\when completed in about a year, is

expected 10 be the first mon-living
mechanism able to “perceive,

recognize the difference between
right and left, almost the way s

child learns.
When fully developed, the Per-
ceptron will be designed Lo remem-
has

niza and identify its surroundings
‘without human training or control.”
Navy officers demonstraling a pre-
liminary form of the device in|ma,
‘Washington said they hesitated to
call it a machine because it is so
much like & “human being without
life.”
Dr. Frank t,

ber images and it

perceived itself, whereas ora

computers remember only what is

fed into them on punch cards or
magnetic tape.

Later Perceptrons, DL Rosenblatt
sosaid, will be able to recognize pes-
pla and call out their names, Printed
pages, longhand letters and ever

psychologist at the Cornell Aero-
nautieal Laboratory, Inc., Buffalo,

. Y., designer of the Perceptron.
'conducted the demonstration. Tha
machine, he said, would be the first
electronic device to think as the
human brain. Like humans, Per-
ceptron will make mistakes at first,
“but it will grow wiser as it gains|
experience,” he said.

are within fts
reach. Only one more step of devel.
opment, a difficult step, he said, is
needed for the device to hear speech
in one language and Instantly
translate it to speech or writing ie
another language.

Self-Reproduction

In principle, m- Rmumtr. ma.
l. ‘would ba po

oichsiigon Fhnasers -._...v...- u.._

I\ew Yarl\ Times, 1958
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Perceptron

Given labeled data
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Perceptron

Find a classifier
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Symmetric perceptron

Rn
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Perceptron

@ Fix a subset K ¢ R. Givendata Xj,...,Xm € R find a
“classifier” o from the set of classifiers ¥ such that
(Xj, o) € K for all i.

@ For example, ¥ = {£1}", (X, 0) € (—k, k) = K = Version
we consider
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o AcR™n A; L N(0,1/n). > 0.
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Random symmetric binary perceptron model

o AcR™n A; L N(0,1/n). > 0.
@ Findo € {£1}": Ao € (—k,K)".

A11 A1n g1

/‘rn1 . /‘nqn On
@ m = an (proportional regime)
@ Set of solutions Xgar = {0 : Ao € (—k,k)"}

@ Questions:
(a) When do solutions exist Xsar # 07?
(b) Can we find them algorithmically given A, k?
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log 2
—logP(|Z] < k)’

[I>

a < OzSAT(Fa)
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Existence

Z 2 N(0,1). Wh.p. solutions exist iff

log 2
—logP(|Z] < k)’

[I>

a < OzSAT(Fa)

@ Intuition: for a fixed o,
P(Ac € (—k,8)") = (P(—x < Z < K))*".

@ Expected number of solutions: 2" (P(—x < Z < x))*".
Goesto0as n— oo if @ > asar(k).
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@ For any o < asar(rx) the solution space is mostly clustered.

@ Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any o > 0.

@ Case in point: random K-SAT. Solutions are not clustered
in (0, aarg) and algorithms exist, and are clustered in
(caLG, asar) and algorithms are not known.

@ But solutions do exist for small enough « for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

&

@ Clustering can’t be the right answer.
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@ xk=1. agAT(1) =1.82...

Theorem ( )

Fora € (1.71..,1.82..) the following holds. There exists
0 < v1 < o < 1 such that for every two o, ™ € Lsar,

n_1d(U,T) € [0, 1] U [vo, 1].

Namely it exhibits gap in the overlaps.

@ OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]

@ But... known algorithms work for a much smaller than
1.71..

@ Can we get matching bounds?
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@ Create an independent copy Aof A.
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ensemble-OGP

@ Create an independent copy Aof A.
A(t) = V1 — tA+ VtA. Stillii.d. N(0,1/n) entries.

Theorem ( )

Fora € (1.71..,1.82..) and the same 0 < v1 < 1p < 1, the
following holds: for every 0 < s < t < 1 and every
NS ZSAT(S),T S ZSAT(t),

n~'d(o,7) € [0,14] U [va, 1].

Namely the gap holds across all instances A(t).

12/19



ensemble-multi-OGP. Asymptotics x — 0

13/19



ensemble-multi-OGP. Asymptotics x — 0

@ x — 0. mindependent copies Ai, ..., Ap. minterpolation
paths v1 —tA+ VAL k=1,...,m.

13/19



ensemble-multi-OGP. Asymptotics x — 0

@ x — 0. mindependent copies Ai, ..., Ap. minterpolation
paths v1 —tA+ VAL k=1,...,m.

Theorem ( )

For every sufficiently small x and every
10K2 log <1> <a< 7|og2
K

there exist 0 < v1 < v < 1 and m such that the following holds:
forevery0 < 51 < Sp < --- < Sy < 1 and every
o1 € sar(A(S1)),- -, om € Zsar(A(Sm)),

n_1d(0'k,0‘g) € [0, 1/1] U [1/2, 1],

for at least one pair1 < k,I < m.

v
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ensemble-multi-OGP. Asymptotics x — 0

Theorem ( )
Informally, for small x, and

log 2
log (%)
there are no tuples of solutions with intermediate pair-wise
distances, across all m interpolation paths.

1
QoGp = 10%2 log (/4;) <a< CVSAT(,%) =
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ensemble-multi-OGP. Asymptotics x — 0

@ The best algorithm Bansal & Spencer [20] works when
o = O(Ii2) ~ O(Hz |0g(1//€)) = QQGP-
@ A suspect is found — agpgp !

N

Al EPS PNG JPG PDF

@ But can we prove guilt beyond reasonable doubt?
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What can be ruled out by OGP?

@ What classes of algorithms can be ruled out with OGP?

@ Stable algorithms: small change in A results in a small
change in ALG(A).

Theorem ( )

Kim & Roche [93] algorithm is stable: if t = 5 then whp
d (ALG(A(t))ALG(A(0))) = o(n)

l.e. changing input by 1/n°%%2 changes only sublinearly many
entries in the solution.
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OGP is a barrier to stable algorithms

But what about Banal & Spencer algorithm? Is it stable? Most
likely not...
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Bansal & Spencer algorithm is online: o is set to +1
depending only on columns 1,. .., k of the matrix A.

Every online algorithm can be implemented on interpolated
instances A(t),t € [0, 1] to create m-tuples ruled out by
e-m-OGP. That is OGP is a barrier to online algorithms.
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Thank you.
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