
A curious case of the symmetric binary
perceptron model.

Algorithms and algorithmic barriers

David Gamarnik (MIT)

DIMACS Workshop on Modeling Randomness in Neural
Network Training

June, 2024

Joint work with Eren Kizildag, Will Perkins & Changji Xu

1 / 19

History

Warren McCulloch & Walter Pitts [43]
Frank Rosenblatt [58]

2 / 19

History

Warren McCulloch & Walter Pitts [43]

Frank Rosenblatt [58]

2 / 19

History

Warren McCulloch & Walter Pitts [43]
Frank Rosenblatt [58]

2 / 19

Perceptron

Given labeled data

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

3 / 19

Perceptron

Find a classifier

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

4 / 19

Symmetric perceptron

0

� 0 Rn

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

5 / 19

Symmetric perceptron

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

�

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

0

� 0 Rn

X1 X2 Xm

Formulas for Hypothesis Testing Module November 11, 2023 1 / 1

6 / 19

Perceptron

Fix a subset K ⊂ R. Given data X1, . . . ,Xm ∈ Rn find a
”classifier” σ from the set of classifiers Σ such that
〈Xi , σ〉 ∈ K for all i .
For example, Σ = {±1}n, 〈Xi , σ〉 ∈ (−κ, κ) = K – Version
we consider

7 / 19

Perceptron

Fix a subset K ⊂ R. Given data X1, . . . ,Xm ∈ Rn find a
”classifier” σ from the set of classifiers Σ such that
〈Xi , σ〉 ∈ K for all i .

For example, Σ = {±1}n, 〈Xi , σ〉 ∈ (−κ, κ) = K – Version
we consider

7 / 19

Perceptron

Fix a subset K ⊂ R. Given data X1, . . . ,Xm ∈ Rn find a
”classifier” σ from the set of classifiers Σ such that
〈Xi , σ〉 ∈ K for all i .
For example, Σ = {±1}n, 〈Xi , σ〉 ∈ (−κ, κ) = K

– Version
we consider

7 / 19

Perceptron

Fix a subset K ⊂ R. Given data X1, . . . ,Xm ∈ Rn find a
”classifier” σ from the set of classifiers Σ such that
〈Xi , σ〉 ∈ K for all i .
For example, Σ = {±1}n, 〈Xi , σ〉 ∈ (−κ, κ) = K – Version
we consider

7 / 19

Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)
Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?

8 / 19

Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)
Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?

8 / 19

Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)
Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?

8 / 19

Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)

Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?

8 / 19

Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)
Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?

8 / 19

Random symmetric binary perceptron model

A ∈ Rm×n, Aij
d
= N(0,1/n). κ > 0.

Find σ ∈ {±1}n: Aσ ∈ (−κ, κ)n.

A11 . . . A1n
...

. . .
...

Am1 . . . Amn

×
σ1

...
σn

 ∈ (−κ, κ)n.

m = αn (proportional regime)
Set of solutions ΣSAT = {σ : Aσ ∈ (−κ, κ)n}

Questions:
(a) When do solutions exist ΣSAT 6= ∅?
(b) Can we find them algorithmically given A, κ?

8 / 19

Existence

Theorem (Abbe, Li & Sly [20], Xu & Perkins [20])

Z d
= N(0,1). W.h.p. solutions exist iff

α < αSAT(κ) ,
log 2

− logP(|Z | ≤ κ)
.

Intuition: for a fixed σ,

P(Aσ ∈ (−κ, κ)n) = (P(−κ < Z < κ))αn .

Expected number of solutions: 2n (P(−κ < Z < κ))αn.
Goes to 0 as n→∞ if α > αSAT(κ).

9 / 19

Existence

Theorem (Abbe, Li & Sly [20], Xu & Perkins [20])

Z d
= N(0,1). W.h.p. solutions exist iff

α < αSAT(κ) ,
log 2

− logP(|Z | ≤ κ)
.

Intuition: for a fixed σ,

P(Aσ ∈ (−κ, κ)n) = (P(−κ < Z < κ))αn .

Expected number of solutions: 2n (P(−κ < Z < κ))αn.
Goes to 0 as n→∞ if α > αSAT(κ).

9 / 19

Existence

Theorem (Abbe, Li & Sly [20], Xu & Perkins [20])

Z d
= N(0,1). W.h.p. solutions exist iff

α < αSAT(κ) ,
log 2

− logP(|Z | ≤ κ)
.

Intuition: for a fixed σ,

P(Aσ ∈ (−κ, κ)n) = (P(−κ < Z < κ))αn .

Expected number of solutions: 2n (P(−κ < Z < κ))αn.
Goes to 0 as n→∞ if α > αSAT(κ).

9 / 19

Existence

Theorem (Abbe, Li & Sly [20], Xu & Perkins [20])

Z d
= N(0,1). W.h.p. solutions exist iff

α < αSAT(κ) ,
log 2

− logP(|Z | ≤ κ)
.

Intuition: for a fixed σ,

P(Aσ ∈ (−κ, κ)n) = (P(−κ < Z < κ))αn .

Expected number of solutions: 2n (P(−κ < Z < κ))αn.
Goes to 0 as n→∞ if α > αSAT(κ).

9 / 19

Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19

Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.

Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19

Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.

Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19

Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.

But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19

Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.

10 / 19

Algorithms

For any α < αSAT(κ) the solution space is mostly clustered.
Based on other similar problems this suggests fast
(poly-time) algorithms should not exist for any α > 0.
Case in point: random K-SAT. Solutions are not clustered
in (0, αALG) and algorithms exist, and are clustered in
(αALG, αSAT) and algorithms are not known.
But solutions do exist for small enough α for perceptron!
Kim & Roche [98], Bansal & Spencer [20]

Clustering can’t be the right answer.
10 / 19

Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]
But... known algorithms work for α much smaller than
1.71...
Can we get matching bounds?

11 / 19

Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]
But... known algorithms work for α much smaller than
1.71...
Can we get matching bounds?

11 / 19

Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]
But... known algorithms work for α much smaller than
1.71...
Can we get matching bounds?

11 / 19

Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]

But... known algorithms work for α much smaller than
1.71...
Can we get matching bounds?

11 / 19

Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]
But... known algorithms work for α much smaller than
1.71...

Can we get matching bounds?

11 / 19

Overlap gap property (OGP)

κ = 1. αSAT(1) = 1.82...

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) the following holds. There exists
0 < ν1 < ν2 < 1 such that for every two σ, τ ∈ ΣSAT,

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely it exhibits gap in the overlaps.

OGP is a barrier to classes of algorithms. Surveys G [21],
G, Moore & Zdeborova [22], Marino [23]
But... known algorithms work for α much smaller than
1.71...
Can we get matching bounds?

11 / 19

ensemble-OGP

Create an independent copy Ã of A.
A(t) =

√
1− tA +

√
tÃ. Still i.i.d. N(0,1/n) entries.

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) and the same 0 < ν1 < ν2 < 1, the
following holds: for every 0 < s < t < 1 and every
σ ∈ ΣSAT(s), τ ∈ ΣSAT(t),

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely the gap holds across all instances A(t).

12 / 19

ensemble-OGP

Create an independent copy Ã of A.
A(t) =

√
1− tA +

√
tÃ. Still i.i.d. N(0,1/n) entries.

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) and the same 0 < ν1 < ν2 < 1, the
following holds: for every 0 < s < t < 1 and every
σ ∈ ΣSAT(s), τ ∈ ΣSAT(t),

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely the gap holds across all instances A(t).

12 / 19

ensemble-OGP

Create an independent copy Ã of A.
A(t) =

√
1− tA +

√
tÃ. Still i.i.d. N(0,1/n) entries.

Theorem (G, Kizildag, Perkins & Xu [22])

For α ∈ (1.71..,1.82..) and the same 0 < ν1 < ν2 < 1, the
following holds: for every 0 < s < t < 1 and every
σ ∈ ΣSAT(s), τ ∈ ΣSAT(t),

n−1d(σ, τ) ∈ [0, ν1] ∪ [ν2,1].

Namely the gap holds across all instances A(t).

12 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

κ→ 0. m independent copies A1, . . . ,Am. m interpolation
paths

√
1− tA +

√
tÃk , k = 1, . . . ,m.

Theorem (G, Kizildag, Perkins & Xu [22])
For every sufficiently small κ and every

10κ2 log

(
1
κ

)
< α <

log 2
log
(1
κ

)
there exist 0 < ν1 < ν2 < 1 and m such that the following holds:
for every 0 < s1 < s2 < · · · < sm < 1 and every
σ1 ∈ ΣSAT(A(s1)), . . . , σm ∈ ΣSAT(A(sm)),

n−1d(σk , σ`) ∈ [0, ν1] ∪ [ν2,1],

for at least one pair 1 ≤ k , l ≤ m.

13 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

κ→ 0. m independent copies A1, . . . ,Am. m interpolation
paths

√
1− tA +

√
tÃk , k = 1, . . . ,m.

Theorem (G, Kizildag, Perkins & Xu [22])
For every sufficiently small κ and every

10κ2 log

(
1
κ

)
< α <

log 2
log
(1
κ

)
there exist 0 < ν1 < ν2 < 1 and m such that the following holds:
for every 0 < s1 < s2 < · · · < sm < 1 and every
σ1 ∈ ΣSAT(A(s1)), . . . , σm ∈ ΣSAT(A(sm)),

n−1d(σk , σ`) ∈ [0, ν1] ∪ [ν2,1],

for at least one pair 1 ≤ k , l ≤ m.

13 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

κ→ 0. m independent copies A1, . . . ,Am. m interpolation
paths

√
1− tA +

√
tÃk , k = 1, . . . ,m.

Theorem (G, Kizildag, Perkins & Xu [22])
For every sufficiently small κ and every

10κ2 log

(
1
κ

)
< α <

log 2
log
(1
κ

)
there exist 0 < ν1 < ν2 < 1 and m such that the following holds:
for every 0 < s1 < s2 < · · · < sm < 1 and every
σ1 ∈ ΣSAT(A(s1)), . . . , σm ∈ ΣSAT(A(sm)),

n−1d(σk , σ`) ∈ [0, ν1] ∪ [ν2,1],

for at least one pair 1 ≤ k , l ≤ m.
13 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

Theorem (GKPX)
Informally, for small κ, and

αOGP = 10κ2 log

(
1
κ

)
< α < αSAT(κ) =

log 2
log
(1
κ

)
there are no tuples of solutions with intermediate pair-wise
distances, across all m interpolation paths.

14 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

Theorem (GKPX)
Informally, for small κ, and

αOGP = 10κ2 log

(
1
κ

)
< α < αSAT(κ) =

log 2
log
(1
κ

)
there are no tuples of solutions with intermediate pair-wise
distances, across all m interpolation paths.

14 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

The best algorithm Bansal & Spencer [20] works when
α = O(κ2) ≈ O(κ2 log(1/κ)) = αOGP.
A suspect is found – αOGP !

But can we prove guilt beyond reasonable doubt?

15 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

The best algorithm Bansal & Spencer [20] works when
α = O(κ2) ≈ O(κ2 log(1/κ)) = αOGP.

A suspect is found – αOGP !

But can we prove guilt beyond reasonable doubt?

15 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

The best algorithm Bansal & Spencer [20] works when
α = O(κ2) ≈ O(κ2 log(1/κ)) = αOGP.
A suspect is found – αOGP !

But can we prove guilt beyond reasonable doubt?

15 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

The best algorithm Bansal & Spencer [20] works when
α = O(κ2) ≈ O(κ2 log(1/κ)) = αOGP.
A suspect is found – αOGP !

But can we prove guilt beyond reasonable doubt?

15 / 19

ensemble-multi-OGP. Asymptotics κ→ 0

The best algorithm Bansal & Spencer [20] works when
α = O(κ2) ≈ O(κ2 log(1/κ)) = αOGP.
A suspect is found – αOGP !

But can we prove guilt beyond reasonable doubt?

15 / 19

What can be ruled out by OGP?

What classes of algorithms can be ruled out with OGP?
Stable algorithms: small change in A results in a small
change in ALG(A).

Theorem (GKPX)

Kim & Roche [93] algorithm is stable: if t = 1
n0.02 then whp

d (ALG(A(t))ALG(A(0))) = o(n)

I.e. changing input by 1/n0.02 changes only sublinearly many
entries in the solution.

16 / 19

What can be ruled out by OGP?

What classes of algorithms can be ruled out with OGP?

Stable algorithms: small change in A results in a small
change in ALG(A).

Theorem (GKPX)

Kim & Roche [93] algorithm is stable: if t = 1
n0.02 then whp

d (ALG(A(t))ALG(A(0))) = o(n)

I.e. changing input by 1/n0.02 changes only sublinearly many
entries in the solution.

16 / 19

What can be ruled out by OGP?

What classes of algorithms can be ruled out with OGP?
Stable algorithms: small change in A results in a small
change in ALG(A).

Theorem (GKPX)

Kim & Roche [93] algorithm is stable: if t = 1
n0.02 then whp

d (ALG(A(t))ALG(A(0))) = o(n)

I.e. changing input by 1/n0.02 changes only sublinearly many
entries in the solution.

16 / 19

What can be ruled out by OGP?

What classes of algorithms can be ruled out with OGP?
Stable algorithms: small change in A results in a small
change in ALG(A).

Theorem (GKPX)

Kim & Roche [93] algorithm is stable: if t = 1
n0.02 then whp

d (ALG(A(t))ALG(A(0))) = o(n)

I.e. changing input by 1/n0.02 changes only sublinearly many
entries in the solution.

16 / 19

OGP is a barrier to stable algorithms

But what about Banal & Spencer algorithm? Is it stable? Most
likely not...

17 / 19

OGP is a barrier to stable algorithms

But what about Banal & Spencer algorithm? Is it stable?

Most
likely not...

17 / 19

OGP is a barrier to stable algorithms

But what about Banal & Spencer algorithm? Is it stable? Most
likely not...

17 / 19

OGP is a barrier to online algorithms

Bansal & Spencer algorithm is online: σk is set to ±1
depending only on columns 1, . . . , k of the matrix A.

Theorem (GKPX)
Every online algorithm can be implemented on interpolated
instances A(t), t ∈ [0,1] to create m-tuples ruled out by
e-m-OGP. That is OGP is a barrier to online algorithms.

18 / 19

OGP is a barrier to online algorithms

Bansal & Spencer algorithm is online: σk is set to ±1
depending only on columns 1, . . . , k of the matrix A.

Theorem (GKPX)
Every online algorithm can be implemented on interpolated
instances A(t), t ∈ [0,1] to create m-tuples ruled out by
e-m-OGP. That is OGP is a barrier to online algorithms.

18 / 19

OGP is a barrier to online algorithms

Bansal & Spencer algorithm is online: σk is set to ±1
depending only on columns 1, . . . , k of the matrix A.

Theorem (GKPX)
Every online algorithm can be implemented on interpolated
instances A(t), t ∈ [0,1] to create m-tuples ruled out by
e-m-OGP. That is OGP is a barrier to online algorithms.

18 / 19

OGP is a barrier to online algorithms

Bansal & Spencer algorithm is online: σk is set to ±1
depending only on columns 1, . . . , k of the matrix A.

Theorem (GKPX)
Every online algorithm can be implemented on interpolated
instances A(t), t ∈ [0,1] to create m-tuples ruled out by
e-m-OGP. That is OGP is a barrier to online algorithms.

18 / 19

Thank you.

19 / 19

